Boundedness of maximal Calderón–Zygmund operators on non-homogeneous metric measure spaces
نویسندگان
چکیده
منابع مشابه
Boundedness of Maximal Operators and Maximal Commutators on Non-homogeneous Spaces
Let (X,μ) be a non-homogeneous space in the sense that X is a metric space equipped with an upper doubling measure μ. The aim of this paper is to study the endpoint estimate of the maximal operator associated to a Calderón-Zygmund operator T and the L boundedness of the maximal commutator with RBMO functions
متن کاملCommutators of Multilinear Singular Integral Operators on Non-homogeneous Metric Measure Spaces
Abstract. Let (X, d, μ) be a metric measure space satisfying both the geometrically doubling and the upper doubling measure conditions, which is called nonhomogeneous metric measure space. In this paper, via a sharp maximal operator, the boundedness of commutators generated by multilinear singular integral with RBMO(μ) function on non-homogeneous metric measure spaces in m-multiple Lebesgue spa...
متن کاملLocalization operators on homogeneous spaces
Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...
متن کاملFractional type Marcinkiewicz integrals over non-homogeneous metric measure spaces
*Correspondence: [email protected] College of Mathematics and Statistics, Northwest Normal University, Lanzhou, 730070, People’s Republic of China Abstract The main goal of the paper is to establish the boundedness of the fractional type Marcinkiewicz integralMβ ,ρ ,q on non-homogeneous metric measure space which includes the upper doubling and the geometrically doubling conditions. Under the a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
سال: 2014
ISSN: 0308-2105,1473-7124
DOI: 10.1017/s0308210512000054